Dependability Modelling using AADL and the AADL Error Model Annex

Ana Rugina
{aerugina@laas.fr}
Context

- Dependability evaluation for embedded real-time systems

⇒ IST FP6 European Integrated Project ASSERT

Means:
Analytical Modelling

- Petri nets,
- Markov chains

Objectives:
Dependability Measures

Industrial practice:
- UML, AADL models
Outline

• General approach

• Case study

• Conclusion
Approach

AADL Dependability Model

AADL System Architecture Model + AADL System Error Model

Model transformation

GSPN Dependability Model

Model processing

Dependability Measures
Dependability Measures

- **Reliability**
 - measure of continuous delivery of correct service
 - probability of occurrence of a failure before a given instant of time
 - MTTF (mean time to failure)

- **Availability**
 - measure of the readiness for correct service
 - the proportion of correct service deliverance time over a time interval

- **Maintainability**
 - ability to undergo modifications and repairs
 - probability of service restoration before a given instant of time
 - MTTR (mean time to restoration)
Duplex system architecture

duplex_system

- **System1**: sub_system.basic_primary
 - **SW1**: software.basic_primary
 - Primary
 - Backup
 - **HW**: computer.basic
- **System2**: sub_system.basic_backup
 - **SW2**: software.basic_backup
 - Primary
 - Backup
 - **HW**: computer.basic

LAN
AADL Dependability Model

- **Error model**
 - SW.HWSW_SWSWdep
 - SW-SW dependency
 - HW-SW dependency
 - HW.HWSW_HHWHdep
 - HW-SW dependency
 - HW-HW dependency

- **Primary Backup**
 - SW1: software.basic_primary
 - SW2: software.basic_backup
 - HW: computer.basic

- **Error model**
 - SW.HWSW_SWSWdep
 - SW-SW dependency
 - HW-SW dependency
 - HW.HWSW_HHWHdep
 - HW-SW dependency
 - HW-HW dependency

- **Repairman**
 - Repairman: repairman.basic
 - Repairman.Simple
 - HW-HW dependency
Error Model Type

error model SW
features

SW_Error_Free: initial error state;
SW_Activation_Fault, SW_End_of_Error_Detection_Action,
SW_Error_Non_Detected, SW_Error_Detected,
SW_End_of_Exception_Handling, SW_In_Restart: error state;

SW_Fault, SW_Detection_Action, SW_Detected,
SW_Non_Detected, SW_Non_Detected_Disappear,
SW_Non_Detected_Perceived, SW_Error_Detected_Handling,
SW_Error_Temp, SW_Error_Perm, SW_Restart, Tempo: error event;
end SW;
error model SW
features
 SW_Error_Free: initial error state;
 SW_Activation_Fault,
 SW_End_of_Error_Detection_Action,
 SW_Error_Non_Detected, SW_Error_Detected,
 SW_End_of_Exception_Handling,
 SW_In_Restart: error state;
 SW_Fault, SW_Detection_Action, SW_Detected,
 SW_Non_Detected, SW_Non_Detected_Disappear,
 SW_Non_Detected_Perceived,
 SW_Error_Detected_Handling, SW_Error_Temp,
 SW_Error_Perm, SW_Restart: error event;
end SW;
error model implementation SW.Isolated

transitions
 SW_Error_Free-[SW_Fault] -> SW_Activation_Fault;
 [...]
 SW_In_Restart-[SW_Restart] -> SW_Error_Free;

properties
 -- a fault occurs following a poisson distribution
 Occurrence => poisson 0,05 applies to SW_Fault;
 [...]
 -- The restart takes some time
 Occurrence => poisson 60 applies to SW_Restart;

end SW.Isolated;
error model implementation SW.Isolated

transitions

SW_Error_Free-[SW_Fault] -> SW_Activation_Fault;
[...]
SW_In_Restart-[SW_Restart] -> SW_Error_Free;

properties

-- a fault occurs following a poisson distribution
Occurrence => poisson 0.05 applies to SW_Fault;
[...]
-- The restart takes some time
Occurrence => poisson 60 applies to SW_Restart;

end SW.Isolated;
error model implementation SW.Isolated

transitions

- SW_Error_Free-[SW_Fault] -> SW_Activation_Fault;
- SW_Activation_Fault-[SW_Detection_Action] -> SW_End_of_Error_Detection_Action;
- SW_End_of_Error_Detection_Action-[SW_Detected] -> SW_Error_Detected;
- SW_End_of_Error_Detection_Action-[SW_Non_Detected] -> SW_Error_Non_Detected;
- SW_Error_Detected-[SW_Error_Detected_Handling] -> SW_End_of_Exception_Handling;
- SW_Error_Non_Detected-[SW_Non_Detected_Disappear] -> SW_Error_Free;
- SW_Error_Non_Detected-[SW_Non_Detected_Perceived] -> SW_In_ReStart;
- SW_End_of_Exception_Handling-[SW_Error_Temp] -> SW_Error_Free;
- SW_End_of_Exception_Handling-[SW_Error_Perm] -> SW_In_ReStart;
- SW_In_ReStart-[SW_ReStart] -> SW_Error_Free;

properties

- Occurrence => poisson 0.05 applies to SW_Fault;
- Occurrence => poisson 10e+2 applies to SW_Detection_Action;
- Occurrence => fixed 0.7 applies to SW_Detected;
- Occurrence => fixed 0.3 applies to SW_Non_Detected;
- Occurrence => poisson 10e+10 applies to SW_Non_Detected_Disappear;
- Occurrence => poisson 10e+6 applies to SW_Non_Detected_Perceived;
- Occurrence => poisson 10e+2 applies to SW_Error_Detected_Handling;
- Occurrence => fixed 0.98 applies to SW_Error_Temp;
- Occurrence => fixed 0.02 applies to SW_Error_Perm;
- Occurrence => poisson 60 applies to SW_ReStart;
- Occurrence => poisson 10000 applies to Tempo;

end SW.Isolated;
error model SW
features

[...]
SW_KO: in out error propagation;
Both_SW_Dead: in error propagation;
end SW;

error model implementation SW.SWSWdep
features

SW_Needs_Restart, SW_Now_Restart, SW_Both_Dead: error state refines SW_In_Restart;

transitions

[...]
SW_Needs_Restart-[out SW_KO] -> SW_Needs_Restart;
SW_Needs_Restart-[Tempo] -> SW_Now_Restart;
SW_Needs_Restart-[in Both_SW_Dead] -> SW_Both_Dead;

properties

[...]
Occurrence => fixed 1 applies to SW_KO;
end SW.SWSWdep;
Component implementation

system implementation software.primary
modes
 primary: initial mode;
 backup: mode;
 primary-[inp] -> backup;
 backup-[notification] -> primary;

annex Error_Model {**
 Model => Mymodels::SW. SWSWdep;
 Vote_In => SW_Both_Dead when inp[SW_KO] and notification[SW_KO]
 applies to inp, notification;
 Vote_Transition =>
 inp[SW_KO]
 applies to inp;
 Vote_Transition =>
 notification[SW_KO]
 applies to notification; **};
end software.primary;
Error Model Annex Evolution

- Occurrence properties
 - parametric

- Link between the mode model and the error model
 - mode-dependent behaviour in presence of faults

- Vote_In and Vote_Out properties
 - evaluate Boolean error expressions when needed

- Inheritance and refinements
 - similarly to the core standard mechanisms
Summary

• AADL system error model
 • Stepwise construction
 ▪ Building error models as if components were isolated
 ▪ Adding dependencies progressively

• Error Model Annex assessment

• Model transformation: manual ⇒ automatic
Dependability Modelling using AADL and the AADL Error Model Annex

Ana Rugina
{aerugina@laas.fr}