Cotre Annex
HRT-HOOD embedding

FéRIA

17th October 2005
Outline

1. Basic Principles
2. Data and types and subprograms
 - Subprogram call
3. Message exchanges
4. HOOD objects
 - Periodic Threads
5. Cotre property set
6. Specification of system properties (preliminary study)
1. Basic Principles
2. Data and types and subprograms
 - Subprogram call
3. Message exchanges
4. HOOD objects
 - Periodic Threads
5. Cotre property set
6. Specification of system properties (preliminary study)
1. Basic Principles
2. Data and types and subprograms
 - Subprogram call
3. Message exchanges
4. HOOD objects
 - Periodic Threads
5. Cotre property set
6. Specification of system properties (preliminary study)
Outline

1. Basic Principles
2. Data and types and subprograms
 - Subprogram call
3. Message exchanges
4. HOOD objects
 - Periodic Threads
5. Cotre property set
6. Specification of system properties (preliminary study)
1. Basic Principles
2. Data and types and subprograms
 - Subprogram call
3. Message exchanges
4. HOOD objects
 - Periodic Threads
5. Cotre property set
6. Specification of system properties (preliminary study)
Outline

1. Basic Principles
2. Data and types and subprograms
 - Subprogram call
3. Message exchanges
4. HOOD objects
 - Periodic Threads
5. Cotre property set
6. Specification of system properties (preliminary study)
Outline

1. Basic Principles
2. Data and types and subprograms
 - Subprogram call
3. Message exchanges
4. HOOD objects
 - Periodic Threads
5. Cotre property set
6. Specification of system properties (preliminary study)
- Embedding of HRT-HOOD concepts in AADL
 - Property sets
 - Behavioral annex (non deterministic specifications over AADL data)
- Expression of system properties
Outline

1. Basic Principles
2. Data and types and subprograms
 - Subprogram call
3. Message exchanges
4. HOOD objects
 - Periodic Threads
5. Cotre property set
6. Specification of system properties (preliminary study)
Simple and compound types

- Simple types: package with data declarations for integers, reals, ...
- Compound types (records): user defined hierarchies of data

```
package Cotre
  data integer
    properties Source_Data_Size => 32 bits;
  end integer;

  data float end float;

  data boolean end boolean;
end Cotre;
```
Arrays

- No array type in AADL
- Reuse of UML multiplicity

\[\Rightarrow \text{new AADL property} \]

\[
\text{tab: data Cotre::integer} \{\text{CotreProperties::Multiplicity=}\}
\]

Multiplicity attribute \[\Rightarrow \]

- Implicit declaration of access subprograms
- Usual array notation defined in Cotre behavioral annex
- Equivalent to new \text{data} declaration
Subprograms

- Behavior attached to subprogram implementations
- Access to subprogram parameters
- Access to visible data declared in AADL
Annex for subprogram behavior

- Specified by an automaton
- Reuse of mode automata syntax
- Action part associated to a transition
- Guard added to event
- Final state declaration: when reached,
 - output parameters are transmitted to caller,
 - control returns to caller.
Example (implementation)

```
subprogram implementation addition.default
annex cotre_behavior {**
states
  s0 : initial state;
  s1 : final state;
transitions
  s0 -[ ]-> s1 { r := x + y ; ovf := false; }
  s0 -[ ]-> s1 { r:= 0; ovf := true; }
**};
end start_read;
```
Subprogram call

- AADL control flow: specification of unconditional call sequences
- proposed annex:
 - data dependant control flows
 - subprogram calls
 - raise of events
Raise of an event

subprogram addition
features
 x: in parameter std::integer; y: in parameter std::integer;
 r: out parameter std::integer; ovf: out event;
end addition;

subprogram implementation addition.default
annex cotre_behavior {**
states
 s0 : initial state; s1 : final state;
transitions
 s0 -[]-> s1 { r := x + y ; ovf := false; }
 s0 -[ovf!]-> s1 { }
**};
end start_read;
Outline

1. Basic Principles
2. Data and types and subprograms
 - Subprogram call
3. Message exchanges
4. HOOD objects
 - Periodic Threads
5. Cotre property set
6. Specification of system properties (preliminary study)
use of ports and port groups of AADL
syntax similar to that of subprogram calls
 \(p! (t_1, \ldots, t_n) \) sends \(t_i \) to port group \(p \)
 \(p? (x_1, \ldots, x_n) \) receives \(x_i \) from port group \(p \)
use of () to delimit port groups
Example of message transmission

```plaintext
thread implementation test.default
subcomponents
  x: data Cotre::integer;
annex cotre_behavior {**
  states
    s0: initial state;
    s1: state;
  transitions
    s0 -[p_in?x]-> s1 {}
    s1 -[p_out!x+1]-> s0 {}
**};
end test.default;
```
Outline

1. Basic Principles
2. Data and types and subprograms
 - Subprogram call
3. Message exchanges
4. HOOD objects
 - Periodic Threads
5. Cotre property set
6. Specification of system properties (preliminary study)
HOOD passive objects

Direct translation to AADL data declarations

```plaintext
subprogram put
  features v: in parameter Cotre::integer;
end put;
subprogram get
  features v: out parameter Cotre::integer;
end get;
subprogram empty
  features v: out parameter Cotre::boolean;
end empty;
subprogram full
  features v: out parameter Cotre::boolean;
end full;
```
data specification

data stack
features
 put: subprogram put;
 get: subprogram get;
 empty: subprogram empty;
 full: subprogram full;
end stack;
HOOD protected objects

- supported by AADL
- data with property `Concurrency_Control_Protocol`
- Access control left unspecified by AADL
- property
 - `SupportedConcurrency_Control_Protocols` to be defined
HOOD active objects

- separation of processing and synchronization
- subprogram behavior sequential
- object behavior: synchronization part
- AADL mechanisms weaker than HRT-HOOD:
 - asynchronous communications through ports,
 - highly synchronous communications through client/server subprograms,
 - no synchronization conditions
Asynchronous mode of HRT-HOOD

- Entry points are AADL ports
- Asynchronous message sending
- Thread associated to the server
- Bounded message queue (AADL attribute `Queue_Size`)
- Acceptance conditions specified by the server thread
Highly synchronous mode of HRT-HOOD

- The called service can return a result to the client.
- Partially implemented by AADL client/server subprogram
- Size of the server queue bounded (*Queue_Size* attribute)
- Activation conditions not specified in AADL
 ➝ Use of the server thread to express conditions
 ➝ the server thread waits for allowed input events
 ➝ the client waits for a transition to a *final* state
Semi-synchronous mode of HRT-HOOD

- The client wakes up when message is taken into account
- No value is returned
- The server thread calls the subprogram associated to the entry point

⇝ implementation of client wake up: transition to a return state

⇝ specification of semi-synchronous mode: new property attached to entry point

Server_Call_Protocol:

```
type enumeration (LSER, HSER) → HSER
applies to (server subprogram);
```
Elapse of time

defined as new actions

- Computation \((\text{min}, \text{max})\): non deterministic CPU usage
- Delay \((\text{min}, \text{max})\): non deterministic wait
Periodic threads

Reuse of AADL properties attached to threads:

- Dispatch_Protocol=>Periodic
- Period=>...

The behavior defined by the behavioral annex starts from an initial state and must reach all final states before Compute_Deadline.
Bounded synchronization time: example

\[s_0 \rightarrow s_1 \{ \} \]
\[s_0 \rightarrow s_2 \{ \} \]

- if synchronization on \(p \) occurs less the \(T \) t.u. after \(g \) becomes true, send message and go to \(s_1 \)
- else wait for \(T \) t.u. and go to \(s_2 \)
Outline

1. Basic Principles
2. Data and types and subprograms
 - Subprogram call
3. Message exchanges
4. HOOD objects
 - Periodic Threads
5. Cotre property set
6. Specification of system properties (preliminary study)
property set CotreProperties is
 Server_Call_Protocol: type enumeration (ASER,LSER,HSER)
 → HSER applies to (server subprogram);
 Multiplicity : aadlinteger applies to (data);
 Multiplicities : list of aadlinteger applies to (data)
end CotreProperties;
Outline

1. Basic Principles
2. Data and types and subprograms
 - Subprogram call
3. Message exchanges
4. HOOD objects
 - Periodic Threads
5. Cotre property set
6. Specification of system properties (preliminary study)
Environment of a component

- Verification needs a closed system
- Compositional verification needs environment hypothesis

 attach an environment component to each component

 one to one correspondance between declared features

- Environment can be specified hierarchically
- Environment has a behavior
- Verification of the product (closed system)
Specification of system properties

- CTL-based domain specific properties
-