ADeS presentation

a simulator for AADL
v0.2.2

Amélie Schyn
Romain Sezestre
Jean-François Tilman
Agenda

- Objective of the simulation
- Presentation of the tool
- Demonstration
- To go further
Objective of the simulation
Why simulating AADL?

- Scheduling analysis
- Mode change analysis
- Workload statistics
- Temporal dimensioning
- Data flow study
- Control flow study

ADeS
Behavior simulation of AADL architecture
Requirements for a simulator

- Simulation of the full AADL specification with exact compliance with the standard
- Support of behavior descriptions
- Support of AADL extensibility (new properties, new protocols, etc.)
- Integration with other AADL tools
- Storage of the results for post-analyses
Area of the simulation

- Components
 - Individual behavior
- Communication between components
 - Bus & data access
 - Subprogram calls
 - Port connections
- Modes
 - Local mode change
 - SOM change
Presentation of the tool
Technical overview

- ADeS
 - Eclipse plug-in
 - Built on OSATE and Topcased
 - Interoperability with AADL tools
 - Under Eclipse Public License
Behavior description

AADL standard behavior

Simulation kernel

Scheduling protocols
Queuing protocols
...
Objective: provide a minimal behavior description
Target: threads, devices, subprograms
Form: list of sequential actions
Possible actions:
- Compute (<duration>)
- Raise (<port>)
- Raise (<port>, <data>)

```plaintext
annex behavior {**
  t1 {  
    compute(10);  
    raise(chMode);
  } in modes (normal);
  t1 {  
    compute(25);  
    raise(chMode);
  } in modes (backup);
**};
```
Flexibility and extensions

- Support of AADL annexes
 - Capability to develop new supports
- Capability to add of new protocols
 - scheduling protocols
 - dispatch protocols
 - dequeuing protocols
 - overflow handling protocols
 - queue processing protocols
- Possibility to reuse of the core level for other simulation models
Demonstration
Driving a simulation

OSATE

AADL modeling

Check of the AADL model

ADeS

ADeS needs fulfilled?

Yes

Instantiation

Simulation

No
Demo scenario 1

Proc A
- Sched. protocol = RMS
 - TA1: 100ms, CET=35ms
 - TA2: 150ms, CET=45ms
 - TA3: 200ms, CET=25ms

Proc B
- Sched. protocol = RMS
 - TB1: 40ms, CET=10ms
 - TB2: 60ms, CET=15ms
 - TB3: 80ms, CET=20ms

Mem

SI
Demo scenario 2

- **t1**: 20ms/60ms CET=10ms/25ms
- **t2**: 100ms CET=20ms

proc
- Sched. protocol = RMS

mem

dev
- prop. delay = 5ms

b
- backup

S.I
- normal
To go further
Design of a new GUI

Navigator

- System
- Process
 - Thread sender
 - Dispatch
 - Complete
 - Error
 - triggerPort
 - Thread receiver
 - Dispatch
 - Complete
 - Error
 - triggerPort
- Processor
- Memory

Editor

- Display depending on the selected component
- Current status
- Display options
- Breakpoints

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
</table>

Chronograms

- Console

- sender
- receiver
- processor
Road map

2006

• Strengthening of simulation kernel
• Improvement of AADL compliance
• Trace mechanism

2007

• Demo version for trial
• New GUI
• Support of behavior annex
• New developments on demand

Feb. 2007
More information

- **Axlog Ingénierie**
 - Tel: +33 1 41 24 31 00
 - Fax: +33 1 41 24 07 36
 - Address:
 19-21 rue du 8 mai 1945
 94110 Arcueil, FRANCE
 - E-mail: aadl@axlog.fr
 - Web page
 http://www.axlog.fr/R_d/aadl/ades_en.html