The Society of Automotive Engineers (SAE) Architecture Analysis & Design Language (AADL) Standard

An International Industry Standard for Embedded & Real-time Systems

Bruce Lewis
Chair, SAE AS-2C Subcommittee
Army AMCOM SED
bruce.a.lewis@us.army.mil
256-876-3224

Peter Feiler
Technical lead, editor
Software Engineering Institute
phf@sei.cmu.edu
412-268-7790
SAE AADL Standard
An Enabler of Predictable Model-Based Embedded System Engineering

• Notation for specification of task and communication architectures of Real-time, Embedded, Fault-tolerant, Secure, Safety-critical, Software-intensive systems
• Fields of application: Avionics, Automotive, Aerospace, Autonomous systems, …
• Based on 15 Years of DARPA funded technologies
• Standard approved & published Nov 2004
• www.aadl.info
SAE AS-2C AADL Subcommittee

- Bruce Lewis (US Army AMRDEC): Chair
- Peter Feiler (SEI): technical lead, author & editor
- Steve Vestal (Honeywell): co-author
- Ed Colbert (USC): UML Profile of AADL
- Joyce Tokar (Pyrrhus Software): Ada & C Annex

Other Voting Members
- Boeing, Rockwell, Honeywell, Lockheed Martin, Raytheon, Smith Industries, General Dynamics, Airbus, Axlog, European Space Agency, TNI, Dassault, EADS, High Integrity Solutions

Coordination with
- NATO Aviation, NATO Plug and Play, French Government COTRE, SAE AS-1 Weapons Plug and Play, OMG UML & SysML
AADL-Based System Engineering

System Analysis
- Schedulability
- Performance
- Reliability
- Fault Tolerance
- Dynamic Configurability

System Integration
- Runtime System Generation
- Application Composition
- System Configuration

Architecture Modeling
Abstract, but Precise

Software System Engineer

Composable Components

Predictive Embedded System Engineering
Reduced Development & Operational Cost

Execution Platform

Application Software

SAE AADL

GPS DB HTTPS Ada Runtime

Devices Memory Bus Processor

© 2004 by Carnegie Mellon University
A Partitioned Portable Architecture

Strong Partitioning
- Timing Protection
- OS Call Restrictions
- Memory Protection

Interoperability/Portability
- Tailored Runtime Executive
- Standard RTOS API
- Application Components
The AADL Standard

- Requirements document SAE ARD 5296
 - Input from aerospace industry
 - Balloted and approved in 2000
- SAE AADL document SAE AS 5506
 - Core language published by SAE Nov 2004
 - In review to be balloted late 2004
 - Graphical AADL notation
 - UML profile of AADL for UML 1.4 and UML 2.0
 - AADL Meta model, XMI domain model, XML schema
 - Ada and C Annex
- In development
 - Reliability Modeling Annex
 - Partitioning Annex (ARINC653)
AADL: The Language

Components with precise semantics
 – Thread, thread group, process, system, processor, device, memory, bus, data, subprogram

Completely defined interfaces & interactions
 – Data & event flow, synchronous call/return, shared access
 – End-to-End flow specifications

Real-time Task Scheduling
 – Supports different scheduling protocols incl. GRMA, EDF
 – Defines scheduling properties and execution semantics

Modal, configurable systems
 – Modes to model transition between statically known states & configurations

Component evolution & large scale development support

AADL language extensibility
AADL Language Extensions

- New properties through property sets
- Sublanguage extension
 - Annex subclauses expressed in an annex-specific sublanguage
- Project-specific language extensions
- Language extensions as approved SAE AADL standard annexes
- Examples
 - Error Model
 - ARINC 653 Partition
 - Behavior
 - Constraint sublanguage
Two-Tier Tool Strategy

• Open Source AADL Tool Environment (OSATE)
 – Developed by SEI
 – Low entry cost solution (no cost CPL)
 – Multi-platform support based on Eclipse
 – Vehicle for in-house prototyping of project specific architecture analysis
 – Vehicle for architecture research with access to industrial models & industry exposure to research results

• Commercial Tool Support
 – UML tool environment extension based on UML profile
 – Extension to existing modeling environment with AADL export/import
 – Analysis tools interfacing via XML or XML to native filter
 – Runtime system generation tools

Artisan, Rational, …

TNI Stood
Benefits

• Model-based system engineering benefits
 – Analyzable architecture models drive development
 – Predictable runtime characteristics at different modeling fidelity
 – Model evolution & tool-based processing
 – Prediction early and throughout lifecycle
 – Reduced integration & maintenance effort

• Benefits of AADL as SAE standard
 – Common modeling notation across organizations
 – Single architecture model augmented with analysis properties
 – Interchange & integration of architecture models
 – Tool interoperability & extensible engineering environments
 – Aligned with UML-based engineering practices
Two Case Studies

• Full-scale analysis & integration
 – Port of missile guidance system
 – Tool-supported analysis & generation

• Pattern-based analysis of systemic issues
 – Modernized avionics system architecture
 – Change in real-time architecture concepts
MetaH Case Study at AMCOM

• Reengineered Missile Application
 – Missile on-board software and 6DOF environment simulation originally in Jovial
 – Ported to Ada83, executing on dual i80960MC, Tartan Ada, VME Boards
 – Built to Generic Missile Reference Architecture
 – Specified in MetaH, 12 to 16 concurrent processes
 – Timing analysis early in reengineering effort
 – Runtime executive generated by MetaH toolset
 – MetaH reduced total re-engineering cost 40% on first project it was used on. Missile prime estimated savings at 66%.
MetaH Case Study at AMCOM - 2

• Missile Application ported to a new execution environment
 – Multiple ports to single and dual processor implementations
 – New processors (Pentium and PowerPC), compilers, O/S
 – First time executable, flew correctly on each target environment
 – Execution platform description and binding specification in MetaH model
 – Port of runtime executive virtual machine to new processor & O/S
 – Ports took a few weeks rather than 10 months
AMCOM Effort Saved Using MetaH

Total project savings 50%, re-target savings 90%

- First integration of reengineered system
- Retargeting to new execution platform
- Reengineering & MetaH model analysis

© 2004 by Carnegie Mellon University
AADL-Based Pattern Analysis

• SAE AADL employs
 – Components with precisely defined execution semantics
 – Explicit component interactions
 – Separation of concerns

• Pattern-based architecture analysis approach
 – Uses design patterns in analysis
 – Identifies systemic problems early
 – Enables the right choices with confidence
 – Provides analysis-based decisions
An Avionics System Case Study

• Migration from static timeline to preemptive scheduling
 – Identified issues with shared variable communication
 – Migration potential from polling tasks to event-driven tasks

• Flexibility, predictability & efficiency of port-based communication
 – Support for deterministic transfer & optimized buffers

• Effectiveness of connection & flow semantics
 – Bridge to control engineers
 – Insulate from partition scheduling decisions
 – Support end-to-end latency analysis

Analyzable fault-tolerant redundancy patterns
 – Orthogonal architecture view without model clutter
A Naïve Thread-based Design

From other Partitions

Periodic I/O

20Hz

Pr 1

Pr 2

Navigation Sensor Processing

20Hz

Integrated Navigation

10Hz

Pr 3

Pr 4

Guidance Processing

20Hz

Flight Plan Processing

5Hz

Pr 6

Aircraft Performance Calculation

2Hz

Pr 9

Shared data area

Potential priority inversion due to priority assignment

Tasks must complete within frame => cyclic executive behavior

Potential non-deterministic communication due to preemption

To other Partitions

© 2004 by Carnegie Mellon University

www.aadl.info
Flight Manager in AADL

AADL connections have precise timing semantics

From Partitions

Nav signal data

Navigation Sensor Processing

20Hz

Nav sensor data

Integrated Navigation

10Hz

Nav data

Guidance Processing

20Hz

Guidance

Flight Plan Processing

5Hz

FP data

Aircraft Performance Calculation

2Hz

Nav data

Fuel Flow

FP data

Performance data

Immediate & delayed data port connections preserve determinism
Command Flow Timing

Sampling of input

Cockpit Display

Display Manager

Page Content Manager

Flight Manager

Flight Director

Partition latency imposes lower latency bound

Cross-partition communication assumed to be a frame boundary

Sampling of input imposes lower latency bound
System Redundancy

High speed bus

Typical chart

1553 bus
Redundancy Specification

- Redundancy abstraction
- Co-location constraints on execution platform binding

Redundancy characteristics as properties
Primary/Backup Patterns

Passive Backup
- SS1.1
- SS1.2

CSS1 Primary

CSS1 Backup

Hot Standby
- SS1.1
- SS1.2

CSS1 Primary

CSS1 Backup

Continuous State Exchange
- SS1.1
- State
- SS1.2

CSS1

Voted Output
- SS1.1
- SS1.2
- SS1.3
AADL In Use

- Examples of system modeling & analysis
- Modeling of reference architectures
- Verification of system architectures
- SBIR & STTR projects
Automating Timing and Safety Analyses from Architecture Specifications

Steve.Vestal@Honeywell.com

9 February 2005

Honeywell Laboratories
DARPA
TRADOC
Aeronautics Research Laboratory

Architecture Timing & Safety Analysis
Architecture Model

Hardware architecture specification
- 8 central processors (CPs)
- 18 I/O processors (IOPs)
- a switched network architecture
 - 12 switches, 62 point-to-point cables, mix of 10Mbs and 100Mbs
 - Used for safety analysis
 - Used for globally asynchronous end-to-end timing analysis
- a time-triggered architecture
 - 8 multi-drop time-triggered busses, 10Mbs
 - Used for globally time-triggered end-to-end timing analysis
 - Used for globally asynchronous end-to-end timing analysis

Software Architecture
Function/application specifications were generated from a preliminary spreadsheet listing signal data.

Total of 1322 signals to/from 40 functions (includes redundant sensors/signals).
Age Scheduling Results

Connections were merged (multiplexed) if
- They had the same route between the same processors
- The connected processes had the same periods
- 2644 merged to 610

Processes at same rates on same IOM (but not CP) were merged
- 1472 merged to 203

We modeled every CP, IOM, and bus as a resource

Workload (AMPL model):
- 1425 variables (one for each process/processor and message/bus pair)
- 1872 constraints (one for each resource and one for each signal)

Model generated from AADL spec in about 45 seconds

Feasible solution found by CONOPT in about 45 seconds
Analyzeable and Reconfigurable
AADL Specifications for IMA
System Integration

David Statezni
Advanced Technology Center
Rockwell Collins, Inc.
Proof of Concept Example

Generic Display System with Rockwell Collin’s Switched Ethernet LAN

- Only LAN-related entities modeled
- Model generated from Input/Output & Thread data stored in Database

Model Size

- 5 Common Processing Modules
- 13 Virtual Machines
- 90 Threads
- 165 End-to-end Data Flows
Summary

- ASAAC configuration and reconfiguration behaviour modelled in terms of AADL events and moding
- ASAAC application modelling based on AADL processes, threads, data ports, and connections
 - Formalisation of translation scheme
 - Provision of templates for ASAAC modelling
- Platform modelling based on hierarchical refinement (as suggested by Peter Feiler)
 - Formalise refinement approach for incorporation into tools
- Application and communication refinement according to OSI reference model
 - Covers data flow – control flow transformation
 - Applicable for 2 adjacent protocol layers only
- Synchronisation with ARINC modelling required
AADL and the Plug and Play Weapon
Early Experience Using the Architecture Analysis & Design Language
TC04

Yves LaCerte
3 November 2004
system implementation WMS.WMS
subcomponents
...
connections
...
modes
end WMS.WMS;

subcomponents
-- processors
-- processes
-- bindings

connections
-- port groups

modes
MainMode: initial mode;
BackupMode: mode;
COTRE as an AADL profile

- Funded by the French research department (total 1.9M€, 230 m.m), from 2002 to 2004
- Goal: Real Time architecture verification (mainly from the behavioral point of view)
- Exploration project aiming to develop a demonstration tool
- Partners: AIRBUS, TNI, IRIT, LAAS, ONERA-DTIM, ENSTB
Example Annex Extension

THREAD t
FEATURES
 sem1 : DATA ACCESS semaphore;
 sem2 : DATA ACCESS semaphore;
END t;

THREAD IMPLEMENTATION t.t1
PROPERTIES
 Period => 13.96ms;
 cotre::Priority => 1;
 cotre::Phase => 0.0ms;
Dispatch_Protocol => Periodic;

COTRE thread properties

ANNEX cotre.behavior {**
STATES
 s0, s1, s2, s3, s4, s5, s6, s7, s8 : STATE;
 s0 : INITIAL STATE;
TRANSITIONS
 s0 -[]-> s1 { PERIODIC_WAIT };
 s1 -[]-> s2 { COMPUTATION(1.9ms, 1.9ms) };
 s2 -[sem1.wait ! (-1.0ms)]-> s3;
 s3 -[]-> s4 { COMPUTATION(0.1ms, 0.1ms) };
 s4 -[sem2.wait ! (-1.0ms)]-> s5;
 s5 -[]-> s6 { COMPUTATION(2.5ms, 2.5ms) };
 s6 -[sem2.release !]-> s7;
 s7 -[]-> s8 { COMPUTATION(1.5ms, 1.5ms) };
 s8 -[sem1.release !]-> s0;
**};
END t.t1;

COTRE behavioral annex

Courtesy of cotre

www.aadl.info
ASSERT

Automated proof-based System and Software Engineering for Real-Time systems

Eric Conquet
ESA/ESTEC
TEC-EME, Software Engineering and Standardization
Noordwijk, The Netherlands
• Related strategic objective: Embedded Systems
• Type of instrument: Integrated Project
• Number of partners: 29
• Project cost: 15 M€
• Amount of EC funding: 8.3 M€
 – Roughly 50% of the project cost (the rest is funded by the partners)
• Total duration of the project: 3 Years.
• Starting date: 1st September 2004.
A Research Transition Platform

• SBIR contract requires use of AADL
 – Eglin AFB, 21st Century Systems
 – Weapons Plug’n’Play compatibility analysis

• STTR contract uses AADL
 – U. Penn, Fremont Associates
 – Map hybrid control system language (Charon) into AADL
Two-Tier Tool Strategy

• Open Source AADL Tool Environment (OSATE)
 – Developed by SEI
 – Low entry cost solution (no cost CPL)
 – Multi-platform support based on Eclipse
 – Vehicle for in-house prototyping of project specific architecture analysis
 – Vehicle for architecture research with access to industrial models & industry exposure to research results

• Commercial Tool Support
 – UML tool environment extension based on UML profile
 – Extension to existing modeling environment with AADL export/import
 – Analysis tools interfacing via XML or XML to native filter
 – Runtime system generation tools
XML-Based Tool Integration Strategy

AADL Front-end

- Textual AADL
- Semantic Checking
- Graphical AADL

Declarative AADL Model

AADL Instance Model

Graphical Layout Model

- Scheduling Analysis
- Reliability Analysis
- Safety Analysis

AADL Runtime Generator

Commercial Tool

Research prototype

Project-Specific In-House
OSATE Capabilities

- OSATE Release 0.4.0 based on Eclipse Release 3
- Online AADL help
- Text to XML & XML to text
- Syntax-sensitive text editor
- Parsing & semantic checking of full AADL
- AADL property viewer
- Syntax-Sensitive AADL Object Editor
- Model versioning & team support
- Model instantiation
- Model consistency checking
- AADL to MetaH translator
- Plug-in development

Over 250 downloads internationally
Processed 21000 line AADL model in 20 sec
Next release Jan 2005
Graphical editor
Multi-file support
OSATE Plug-in Extensions

OSATE
Textual AADL, Graphical AADL
XML/XMI AADL, AADL object model API
AADL extension support

EMF
XML/XMI, Metamodel
Change notification
Multi-file support

Eclipse
Platform independence
Extensible help
Task & Problem Mgt
Team support
Plug-in development

AADL Front-end
Text editor
Object editor
Graphical editor
Text<->XML Semantics

OSATE Extensions
Analysis template
Generation template
AADL Semantic API

External Models
External tools

Model Transformation
Timing analysis (RMA)

Architecture Import
Simulink/Matlab model
Extraction via SVM

Architecture Export
MetaH

Architecture Analysis
Security level
Data stream miss rate
Latency

Architecture Consistency
Required connectivity
Model completeness profiles
Connectivity cycles

Architecture Transform
Conceptual architecture ->
Runtime architecture
Rate group optimization
Port group identification
OSATE Plug-in Development

• Four part presentation series
 – Dec 2004 & Jan 2005
 – VTC, Webcast, telecon, video taped
 – Participants included
 • Airbus Industries, ENST, Axlog, TNI France
 • European Space Agency Netherlands
 • EADS Germany
 • US Army AMRDEC
 • Lockheed Martin, Rockwell Collins, Honeywell
 • USC, University of Pennsylvania
 • 21st Century Systems, Pyrrusoft
 • Bosch

• OSATE Plug-in Development Guide
Example of Commercial Tool Support

Pierre Dissaux, AADL meeting, Edinburgh, 12-15 July 2004
pierre.dissaux@tni-world.com
A Technology Transition Enabler

• Industry standard architecture modeling notation & model interchange format facilitates
 – Interchange of architecture models between contractors & subcontractors
 – Integration of architecture models for system of systems analysis
 – Common architecture model for non-functional system property analysis from different perspectives
 – Interoperability of modeling, analysis, and generation tools
 – Platform for research & prototyping of new architecture analysis techniques
Benefits

- Model-based system engineering benefits
 Predictable runtime characteristics addressed early and throughout life cycle greatly reduces integration and maintenance effort

- Benefits of AADL as SAE standard
 AADL as standard provides confidence in language stability, broad adoption, and strong tool support